Inwardly rectifying potassium (IRK) currents are correlated with IRK subunit expression in rat nucleus accumbens medium spiny neurons.

نویسندگان

  • P G Mermelstein
  • W J Song
  • T Tkatch
  • Z Yan
  • D J Surmeier
چکیده

Inwardly rectifying K+ (IRK) channels are critical for shaping cell excitability. Whole-cell patch-clamp and single-cell RT-PCR techniques were used to characterize the inwardly rectifying K+ currents found in projection neurons of the rat nucleus accumbens. Inwardly rectifying currents were highly selective for K+ and blocked by low millimolar concentrations of Cs+ or Ba2+. In a subset of neurons, the inwardly rectifying current appeared to inactivate at hyperpolarized membrane potentials. In an attempt to identify this subset, neurons were profiled using single-cell RT-PCR. Neurons expressing substance P mRNA exhibited noninactivating inward rectifier currents, whereas neurons expressing enkephalin mRNA exhibited inactivating inward rectifier currents. The inactivation of the inward rectifier was correlated with the expression of IRK1 mRNA. These results demonstrate a clear physiological difference in the properties of medium spiny neurons and suggest that this difference could influence active state transitions driven by cortical and hippocampal excitatory input.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dopamine modulates inwardly rectifying potassium currents in medial prefrontal cortex pyramidal neurons.

Dopamine (DA) modulation of excitability in medial prefrontal cortex (mPFC) pyramidal neurons has attracted considerable attention because of the involvement of mPFC DA in several neuronal disorders. Here, we focused on DA modulation of inwardly rectifying K(+) current (IRKC) in pyramidal neurons acutely dissociated from rat mPFC. A Cs(+)-sensitive whole-cell IRKC was elicited by hyperpolarizin...

متن کامل

IRK-1 potassium channels mediate peptidergic inhibition of Caenorhabditis elegans serotonin neurons via a G(o) signaling pathway.

To identify molecular mechanisms that function in G-protein signaling, we have performed molecular genetic studies of a simple behavior of the nematode Caenorhabditis elegans, egg laying, which is driven by a pair of serotonergic neurons, the hermaphrodite-specific neurons (HSNs). The activity of the HSNs is regulated by the G(o)-coupled receptor EGL-6, which mediates inhibition of the HSNs by ...

متن کامل

Striatal potassium channel dysfunction in Huntington's disease transgenic mice.

Huntington's disease (HD) is a neurodegenerative disorder that mainly affects the projection neurons of the striatum and cerebral cortex. Genetic mouse models of HD have shown that neurons susceptible to the mutation exhibit morphological and electrophysiological dysfunctions before and during development of the behavioral phenotype. We used HD transgenic mouse models to examine inwardly and ou...

متن کامل

Long-Lasting Alterations in Membrane Properties, K+ Currents, and Glutamatergic Synaptic Currents of Nucleus Accumbens Medium Spiny Neurons in a Rat Model of Alcohol Dependence

Chronic alcohol exposure causes marked changes in reinforcement mechanisms and motivational state that are thought to contribute to the development of cravings and relapse during protracted withdrawal. The nucleus accumbens (NAcc) is a key structure of the mesolimbic dopaminergic reward system. Although the NAcc plays an important role in mediating alcohol-seeking behaviors, little is known abo...

متن کامل

Dopamine D(2) receptor modulation of K(+) channel activity regulates excitability of nucleus accumbens neurons at different membrane potentials.

The nucleus accumbens (NAc) is a forebrain area in the mesocorticolimbic dopamine (DA) system that regulates many aspects of drug addiction. Neuronal activity in the NAc is modulated by different subtypes of DA receptors. Although DA signaling has received considerable attention, the mechanisms underlying D(2)-class receptor (D(2)R) modulation of firing in medium spiny neurons (MSNs) localized ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 18 17  شماره 

صفحات  -

تاریخ انتشار 1998